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Summary 
• One half of a chicaned sector 7 at ALS (other half is 

COSMIC) 

• MAESTRO will include a new:  

• the next-generation nanoARPES chamber for nanometer-scale 
photoemission. 

• new beamline optics for sector 7, optimized for delivery of 
photons with sufficient flux and energy resolution to achieve 
down to 50 nm spot size. 

• a sample transfer system to existing 
preparation/characterization chambers. 

• MAESTRO also integrates existing growth and 
characterization tools from the existing ESF facility: 

• the existing μARPES endstation, which will probe down to ~10 
μm sample size. 

• the existing crystal growth chambers (MBE and laser-based). 

• a new PEEM, already funded, to be aquired in FY11. 
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MAESTRO Timeline 
2004-2005 - Groundwork 

   Off-site Retreats, 2004 

   Photoemission Review, 2005 

   Workshop October 2005 

   Adopted as part of “wave 1” of the ALS strategic plan 

2005-2007 -Phase-I nanoARPES 

   LDRD funding FY05-07 

   ~300 nm demonstrated FY05 

   Dec 2005, White Paper Submission to DOE 

   DOE Mid-range Instrumentation Program $5M 

      - May 17 2006 preproposal 

      - Aug 30 2006 proposal submitted - Midrange program cancelled 

 

2008-2009 Continued LDRD support 

refinement of detector design 

       

DOE SISGR Midrange program $5M 

      - Aug 30 2008 preproposal 

      - April 2009 proposal submitted 

 - July 15, 2009 proposal accepted 

 

Funded October 2009 

Design and fabrication now is underway 

Existing BL7 decommissioned early 2012 

MAESTRO commissioning begin late 2012 

Users mid 2013? 
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Conventional ARPES 

Gd valence band 

3 minutes 

QuickTime™ and a
Video decompressor

are needed to see this picture.

TiTe2 

16 minutes 

180 minutes: E vs (kx,ky,kz,T) 

Kaindl Tb 

T=200K T=20K 
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Example: Correlated Materials 
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CMR Material 

LCMO 

Lang et al 

Nature v415,412 (2002) 

15 nm2 

High Tc Superconductor 

Bi-2212 

Fath et al 

Science v285,1540 (1999) 

Organic Superconductor 

k-(BEDT-TTF)2Cu[N(CN)2]Br 

Sasaki et al 

J. Ph. Soc. Japan v74,2351 (2005); 

PRL v92,227001 (2004) 

Doped Mott-Hubbard Insulators 

Universal Spatial Fluctuations? 

610 nm2 3000 nm2 

Why go Nano? 



Many interesting samples are very small. 

(c) 2-d plane of needle-

like samples, e.g.

NbSe3, quasicrystals,

etc

probe

cleave probe

(d) microcrystallites embedded

in a host material for cleavage

(a) phase separation

 - doped Mott insulators

- magnetism

probe

(b) isolating flat regions of

irregular cleaves

probe

probe

(f) isolating mixed phases

on epitaxial film surfaces

cleave

sub-µm
probe

(e) thin films grown ex situ;

also quantum dots, other nano-

engineered devices  

• Presently, state-of-the-art resolution is around 20 µm 

Why go Nano? 
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Why go Nano? 

Kaminski PRL 

Even some homogenous samples have 

 structure when cleaved. 



Lefebvre et al., PRL 90, 217401 (2003) 

Free-Standing  Single-wall Nanotubes  between  Pillars 

250 nm 

Optical Luminescence 

nanotube 

spaghetti 

free-standing 

tubes 

nanotubes must be 

isolated from each other 

and the substrate 

50 nm 
2 µm 

We could look at individual 

nanotubes (strained and 

unstrained) with our probe. 

Another example: Single nanotube  



how does nARPES work? 

ZP 
Zone Plate 

OSA 
Order Sorting 

Aperture 

Sample 

Electron 
Analyzer 

~2 m 

~2 mm 

The zone plate acts as a lens 

with up to ~10% efficiency. 

 

The ZP collects the coherent 

fraction (about 10% of total flux) 

 

~0.1 - 1 % of conventional ARPES flux 

50 µm 

50 nm 



Test Instrument 

Liquid Helium-Cooled 

Microscope Stage 

Sample 

1/2” diam 

Photons in 

Down to 300 µm working distance 

ZP holder 

XYZ coarse 

XYZ fine 

OSA holder 

XYZ coarse 
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nARPES test results 

-65

-60

-55

-50

-45

-40

-35

-30

Y
p

-40 -35 -30 -25 -20 -15 -10 -5

Xp

5 µm 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

2 µm 

Resolving the bands from a polycrystalline 

sample 

HOPG graphite 
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Other contrast modes 

• We want to build a new microscope whose contrast 
mechanisms are derived from the ARPES technique 

Hard Work 

Get these 

for free! 

(SPEM) 



space charge effect? 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

8 nAIelectron total yield [nA]

3 µmd=r/ndistance between electrons

100 e-n=f/# electrons per bunch

500 MHzALS repetition rate

5  1010 e-/sfelectron total yield [e-/s]

300 µmr=vtcloud radius

6  106 m/svelectron velocity

60 psectstorage ring bunch length

Back-of-the-envelope calculation 

Numerical Simulation 

bunch length, 

psec 

ALS 65 

CLS 65 

Soleil 14 

BESSY-II 18 

SPEAR-III 16 

NSLS-II 12 [?] 

It pays to be old and slow 

Conclusion: 

•60 psec ALS pulses 

•characteristic charge cloud ~ 3um 

•below this length scale, no sensitivity to spot size 
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Beamline Specifications 

• µARPES 

• 60-600 at 30,000 RP  

• 20-60 at 2meV 

• 600-1000 best effort 

• optimized flux at 10,000 RP 

• 10x10µm spot size 

• nARPES 

• 60-600 at 10,000 RP  

• optimized for coherent flux at 95eV at 50nm spot size 
at 10k RP 

• trade spectral and spatial resolution for flux 
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70mm EPU 

 25 periods 

vmin=8 

hmin=172 

v’min=3 

h’min=13 

’vmax=133 

’hmax=134 

M201 plane 

4.5ºdeflection, L=350mm 

internally cooled glidcop 

M211 and M221 spherical 

4ºdeflection, L=350mm 

H focus exit slit 

Rt225.57m 

Rs=Rt 

ZP objective 
2mm 

0.8m 

4.9923m 

1.5m 

3m 

4.9923m 

2m 

2.0m 

7.0m 

9.5m 

M202 plane, L=350mm 

internally cooled silicon 

G201a,G201b,G202a,G202b plane VLS, L=150mm 

300 (C=4), 600 (C=2), 600 (C=4), 1500  (C=2) lines/mm 

side cooled silicon 

exit slit  

typically 

10 to 20um 

exit slit 

typically 

10 to 20um 

nanoARPES 

(20) 60 eV to 

600 (1000) eV 

R~10,000 

microARPES 

(20) 60 eV to 

600 (1000) eV 

R~30,000 

M213, M214 

KB mirrors 

3ºdeflection, L= 350mm 

distances along 

optical axis 

M212 

flat mirror 

3ºdeflection, L= 300mm 

Beamline Design 



nARPES endstation 



nARPES endstation 

sample & optics module 
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Chamber Rotation 
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Chamber Rotation 
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Chamber Rotation 
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Chamber Rotation 



29 Chamber Rotation 

 



30 Chamber Rotation 
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Chamber Rotation 

 



32 Chamber Rotation 
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Chamber Rotation 

 



34 Chamber Rotation 

 



nARPES endstation 

sample & optics module 



SOM w manipulators 



sample & optics manipulators 



Summary 
• One half of a chicaned sector 7 at ALS (other half is 

COSMIC) 

• MAESTRO will include a new:  

• the next-generation nanoARPES chamber for nanometer-scale 
photoemission. 

• new beamline optics for sector 7, optimized for delivery of 
photons with sufficient flux and energy resolution to achieve 
down to 50 nm spot size. 

• a sample transfer system to existing 
preparation/characterization chambers. 

• MAESTRO also integrates existing growth and 
characterization tools from the existing ESF facility: 

• the existing μARPES endstation, which will probe down to ~10 
μm sample size. 

• the existing crystal growth chambers (MBE and laser-based). 

• a new PEEM, already funded, to be aquired in FY11. 

 

 


